Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly.

نویسندگان

  • Mo Xu
  • Chengzu Long
  • Xiuzhen Chen
  • Chang Huang
  • She Chen
  • Bing Zhu
چکیده

Semiconservative DNA replication ensures the faithful duplication of genetic information during cell divisions. However, how epigenetic information carried by histone modifications propagates through mitotic divisions remains elusive. To address this question, the DNA replication-dependent nucleosome partition pattern must be clarified. Here, we report significant amounts of H3.3-H4 tetramers split in vivo, whereas most H3.1-H4 tetramers remained intact. Inhibiting DNA replication-dependent deposition greatly reduced the level of splitting events, which suggests that (i) the replication-independent H3.3 deposition pathway proceeds largely by cooperatively incorporating two new H3.3-H4 dimers and (ii) the majority of splitting events occurred during replication-dependent deposition. Our results support the idea that "silent" histone modifications within large heterochromatic regions are maintained by copying modifications from neighboring preexisting histones without the need for H3-H4 splitting events.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insights into the molecular architecture and histone H3-H4 deposition mechanism of yeast Chromatin assembly factor 1

How the very first step in nucleosome assembly, deposition of histone H3-H4 as tetramers or dimers on DNA, is accomplished remains largely unclear. Here, we report that yeast chromatin assembly factor 1 (CAF1), a conserved histone chaperone complex that deposits H3-H4 during DNA replication, binds a single H3-H4 heterodimer in solution. We identify a new DNA-binding domain in the large Cac1 sub...

متن کامل

The N-terminal domains of histones H3 and H4 are not necessary for chromatin assembly factor-1- mediated nucleosome assembly onto replicated DNA in vitro.

An in vitro reconstitution system for the analysis of replication-coupled nucleosome assembly is described. In this "two-step system," nucleosome assembly is performed in a separate reaction from DNA replication, wherein purified newly replicated DNA remains noncovalently marked for subsequent chromatin assembly factor-1 (CAF-1)-dependent nucleosome assembly. Because the nucleosome assembly is ...

متن کامل

Yeast CAF-1 assembles histone (H3-H4) 2 tetramers prior to DNA deposition

Following acetylation, newly synthesized H3-H4 is directly transferred from the histone chaperone anti-silencing factor 1 (Asf1) to chromatin assembly factor 1 (CAF-1), another histone chaperone that is critical for the deposition of H3-H4 onto replicating DNA. However, it is unknown how CAF-1 binds and delivers H3-H4 to the DNA. Here, we show that CAF-1 binds recombinant H3-H4 with 10- to 20-f...

متن کامل

Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange.

Nucleosome deposition occurs on newly synthesized DNA during DNA replication and on transcriptionally active genes via nucleosome-remodeling complexes recruited by activator proteins and elongating RNA polymerase II. It has been long believed that histone deposition involves stable H3-H4 tetramers, such that newly deposited nucleosomes do not contain H3 and H4 molecules with their associated hi...

متن کامل

CAF-1-induced oligomerization of histones H3/H4 and mutually exclusive interactions with Asf1 guide H3/H4 transitions among histone chaperones and DNA

Anti-silencing function 1 (Asf1) and Chromatin Assembly Factor 1 (CAF-1) chaperone histones H3/H4 during the assembly of nucleosomes on newly replicated DNA. To understand the mechanism of histone H3/H4 transfer among Asf1, CAF-1 and DNA from a thermodynamic perspective, we developed and employed biophysical approaches using full-length proteins in the budding yeast system. We find that the C-t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 328 5974  شماره 

صفحات  -

تاریخ انتشار 2010